Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation.

نویسندگان

  • Yoon Sung Nam
  • Andrew P Magyar
  • Daeyeon Lee
  • Jin-Woong Kim
  • Dong Soo Yun
  • Heechul Park
  • Thomas S Pollom
  • David A Weitz
  • Angela M Belcher
چکیده

Over several billion years, cyanobacteria and plants have evolved highly organized photosynthetic systems to shuttle both electronic and chemical species for the efficient oxidation of water. In a similar manner to reaction centres in natural photosystems, molecular and metal oxide catalysts have been used to photochemically oxidize water. However, the various approaches involving the molecular design of ligands, surface modification and immobilization still have limitations in terms of catalytic efficiency and sustainability. Here, we demonstrate a biologically templated nanostructure for visible light-driven water oxidation that uses a genetically engineered M13 virus scaffold to mediate the co-assembly of zinc porphyrins (photosensitizer) and iridium oxide hydrosol clusters (catalyst). Porous polymer microgels are used as an immobilization matrix to improve the structural durability of the assembled nanostructures and to allow the materials to be recycled. Our results suggest that the biotemplated nanoscale assembly of functional components is a promising route to significantly improved photocatalytic water-splitting systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Au-BiVO4 heterogeneous nanostructures as highly efficient visible-light photocatalysts.

Au-BiVO(4) heterogeneous nanostructures have been successfully prepared through in situ growth of gold nanoparticles on BiVO(4) microtubes and nanosheets via a cysteine-linking strategy. The experimental results reveal that these Au-BiVO(4) heterogeneous nanostructures exhibit much higher visible-light photocatalytic activities than the individual BiVO(4) microtubes and nanosheets for both dye ...

متن کامل

Light-driven water oxidation for solar fuels.

Light-driven water oxidation is an essential step for conversion of sunlight into storable chemical fuels. Fujishima and Honda reported the first example of photoelectrochemical water oxidation in 1972. In their system, TiO2 was irradiated with ultraviolet light, producing oxygen at the anode and hydrogen at a platinum cathode. Inspired by this system, more recent work has focused on functional...

متن کامل

Efficient light-driven water oxidation catalyzed by a mononuclear cobalt(III) complex.

A mononuclear Co complex, [Co(III)(DPK·OH)2]Cl (DPK = di(2-pyridyl)ketone), was synthesized and reported as a stable catalyst in visible light-driven water oxidation. The optimum turnover number (TON) of complex 1 is 1610, which, to the best of our knowledge, is the largest TON among metal-organic complexes for photocatalytic water oxidation.

متن کامل

Facile Synthesis of Nickel Chromite Nanostructures by Hydrothermal Route for Photocatalytic Degradation of Acid Black 1 under Visible Light

NiCr2O4 normal spinel nanostructures were prepared via hydrothermal treatment at 180 °C for 12 h in the presence of cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS) and poly vinylpyrrolidone-25000 (PVP-25000) as capping agents and subsequent calcination process at 500 °C for 3 h . In this method, [Ni(en)2(H2O)...

متن کامل

Particulates vs. fibers: dimension featured magnetic and visible light driven photocatalytic properties of Sc modified multiferroic bismuth ferrite nanostructures.

We report the magnetic and visible light driven photocatalytic properties of scandium (Sc) substituted bismuth ferrite (BSFO) particulate and fiber nanostructures. An increasing concentration of Sc was found to reduce the crystallite size, particle size and band gap energy of the BSFO nanostructures, which was evident from X-ray diffraction, field emission scanning electron microscopy and UV-Vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 5 5  شماره 

صفحات  -

تاریخ انتشار 2010